论文标题
2 Quasi类别的灰色张量产品
The Gray tensor product for 2-quasi-categories
论文作者
论文摘要
我们构建了(lax)灰色张量产品的$(\ infty,2)$ - 版本。在1类别级别上,这是$θ_2$ -SET类别的二进制(或更通常是$ n $ - ARY)函数,并且证明与ARA的模型结构相对于Quillen留下了Quillen。此外,我们证明该张量产物构成了“同位素”(双粘合的)单体结构的一部分,或者更准确地说是正常的lax单体结构,该结构是与同型缔合的一部分。
We construct an $(\infty,2)$-version of the (lax) Gray tensor product. On the 1-categorical level, this is a binary (or more generally an $n$-ary) functor on the category of $Θ_2$-sets, and it is shown to be left Quillen with respect to Ara's model structure. Moreover we prove that this tensor product forms part of a "homotopical" (biclosed) monoidal structure, or more precisely a normal lax monoidal structure that is associative up to homotopy.