论文标题

尖锐的界面拉格朗日 - 欧拉群方法,用于刚体流体结构的互动

A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction

论文作者

Kolahdouz, Ebrahim M., Bhalla, Amneet P. S., Scotten, Lawrence N., Craven, Brent A., Griffith, Boyce E.

论文摘要

本文介绍了一种尖锐的界面方法,以模拟涉及浸入粘性不可压缩流体的刚体的流体结构相互作用(FSI)。在一系列基准测试案例以及大规模的生物医学FSI模型中,证明了该方法的能力。本文开发的数值方法,我们称之为沉浸式的Lagrangian-Eulerian方法,它通过求解分区和固体子域的单独动量方程来整合了分区和沉浸式FSI配方的各个方面,例如在分配的配方中,同时也使用不合格的液体和结构的置换区域,以及不接触的动态置换区域。使用了Dirichlet-Neumann耦合方案,其中浸入固体的运动是由沿流体结构界面评估的流体牵引力驱动的,并且沿该界面的流体运动受到约束以匹配固体速度,从而满足了无滑动条件。为了开发一种实用的数值方法,我们采用了一种惩罚方法,该方法大致沿流体结构界面施加了无滑动条件。我们的流体结构相互作用方案依赖于浸入的界面方法来进行离散的几何形状,该方法可以准确地确定沿复杂流体结构接口的速度和应力。与常用的分区FSI方法不同,可能会遭受所谓的添加质量效应不稳定性,我们的方法保留了涉及极小,几乎相等,相等且较大的固体流体密度比率的测试案例的稳定性,而不需要亚列表,而不需要亚列表或复杂的压力处理。还提出了生物医学FSI演示病例,包括脉冲复制剂中叶叶机械心脏瓣膜的动力学,以及在患者平均的下腔静脉的解剖模型中血液凝块的运输。

This paper introduces a sharp interface method to simulate fluid-structure interaction (FSI) involving rigid bodies immersed in viscous incompressible fluids. The capabilities of this methodology are demonstrated for a range of benchmark test cases along with large-scale models of biomedical FSI. The numerical approach developed herein, which we refer to as an immersed Lagrangian-Eulerian method, integrates aspects of partitioned and immersed FSI formulations by solving separate momentum equations for the fluid and solid subdomains, as in a partitioned formulation, while also using non-conforming discretizations of the dynamic fluid and structure regions, as in an immersed formulation. A Dirichlet-Neumann coupling scheme is used, in which the motion of the immersed solid is driven by fluid traction forces evaluated along the fluid-structure interface, and the motion of the fluid along that interface is constrained to match the solid velocity and thereby satisfy the no-slip condition. To develop a practical numerical method, we adopt a penalty approach that approximately imposes the no-slip condition along the fluid-structure interface. Our fluid-structure interaction scheme relies on an immersed interface method for discrete geometries, which enables the accurate determination of both velocities and stresses along complex fluid-structure interfaces. Unlike commonly used partitioned FSI methods, which can suffer from so-called added mass effect instabilities, our methodology retains stability for test cases involving extremely small, nearly equal, equal, and large solid-fluid density ratios without requiring subiterations or complex handling of the pressure. Biomedical FSI demonstration cases are also presented including the dynamics of a bileaflet mechanical heart valve in a pulse duplicator, and transport of blood clots in a patient-averaged anatomical model of the inferior vena cava.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源