论文标题
最小图表及其应用的属性VII:类型$(2,3,2)$的图表
Properties of minimal charts and their applications VII: charts of type $(2,3,2)$
论文作者
论文摘要
令$γ$为图表,我们用$γ_m$表示标签$ m $的所有边缘的结合。图表$γ$是$(2,3,2)$的类型(如果存在标签$ m $ $ w(γ_{m+2} \capγ_{m+3})= 2 $,其中$ w(g)$是$ g $中的白色顶点的数量。在本文中,我们证明没有最小的$(2,3,2)$的图表。
Let $Γ$ be a chart, and we denote by $Γ_m$ the union of all the edges of label $m$. A chart $Γ$ is of type $(2,3,2)$ if there exists a label $m$ such that $w(Γ)=7$, $w(Γ_m\capΓ_{m+1})=2$, $w(Γ_{m+1}\capΓ_{m+2})=3$, and $w(Γ_{m+2}\capΓ_{m+3})=2$ where $w(G)$ is the number of white vertices in $G$. In this paper, we prove that there is no minimal chart of type $(2,3,2)$.