论文标题

复杂网络的数据驱动控制

Data-Driven Control of Complex Networks

论文作者

Baggio, Giacomo, Bassett, Danielle S., Pasqualetti, Fabio

论文摘要

我们操纵复杂网络的行为的能力取决于有效控制算法的设计,并批判性地,基于网络动力学的准确且可拖延模型的可用性。尽管在过去的几年中,网络系统的控制算法的设计显着进步,但对网络动态的了解是一个无处不在的假设,在实践中很难满足,尤其是当网络拓扑很大并且可能时间变化时。在本文中,我们克服了这一限制,并开发了一个数据驱动的框架,以最佳地控制复杂的动态网络,而无需了解网络动态。我们的最佳控件是使用有限的实验数据集构建的,其中未知的复杂网络被任意和可能的随机输入刺激。除最佳性外,我们还表明,与基于模型的对应物相比,我们的数据驱动公式即使是有利的计算和数值属性。尽管我们的控件对于具有线性动力学的网络证明是正确的,但我们还将其性能与嘈杂的实验数据以及在非线性动力学存在的情况下进行表征,因为它们在减轻动力网络中的级联故障以及在脑网络中操纵神经活动时会出现。

Our ability to manipulate the behavior of complex networks depends on the design of efficient control algorithms and, critically, on the availability of an accurate and tractable model of the network dynamics. While the design of control algorithms for network systems has seen notable advances in the past few years, knowledge of the network dynamics is a ubiquitous assumption that is difficult to satisfy in practice, especially when the network topology is large and, possibly, time-varying. In this paper we overcome this limitation, and develop a data-driven framework to control a complex dynamical network optimally and without requiring any knowledge of the network dynamics. Our optimal controls are constructed using a finite set of experimental data, where the unknown complex network is stimulated with arbitrary and possibly random inputs. In addition to optimality, we show that our data-driven formulas enjoy favorable computational and numerical properties even compared to their model-based counterpart. Although our controls are provably correct for networks with linear dynamics, we also characterize their performance against noisy experimental data and in the presence of nonlinear dynamics, as they arise when mitigating cascading failures in power-grid networks and when manipulating neural activity in brain networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源