论文标题

噪音观察到的扩散过程的在线平滑

Online Smoothing for Diffusion Processes Observed with Noise

论文作者

Yonekura, Shouto, Beskos, Alexandros

论文摘要

我们介绍了一种方法,用于在线估计一类添加功能的平滑期望,这是在一个丰富的扩散过程(可能包括跳跃)家族的背景下 - 在离散时间实例中观察到。我们通过在增强路径空间上工作来克服基础SDE的过渡密度的不可用。例如,可以应用新方法来对指定模型类进行在线参数推断。在过去几年中,主要是在MCMC技术的背景下开发了无限维路径空间上定义的算法。在那里,主要好处是在PC上使用的实用时间消化算法实现了无网格混合时间。我们自己的方法论为无限维在线过滤设定了框架 - 重要的积极实际结果是估计值的构建方差不会随着网格尺寸的降低而增加。除了规律性条件外,我们的方法原则上适用于弱假设 - 相对于MCMC中经常需要的限制性条件或在路径空间定义的方法的过滤文献 - SDE协方差矩阵是可逆的。

We introduce a methodology for online estimation of smoothing expectations for a class of additive functionals, in the context of a rich family of diffusion processes (that may include jumps) -- observed at discrete-time instances. We overcome the unavailability of the transition density of the underlying SDE by working on the augmented pathspace. The new method can be applied, for instance, to carry out online parameter inference for the designated class of models. Algorithms defined on the infinite-dimensional pathspace have been developed in the last years mainly in the context of MCMC techniques. There, the main benefit is the achievement of mesh-free mixing times for the practical time-discretised algorithm used on a PC. Our own methodology sets up the framework for infinite-dimensional online filtering -- an important positive practical consequence is the construct of estimates with the variance that does not increase with decreasing mesh-size. Besides regularity conditions, our method is, in principle, applicable under the weak assumption -- relatively to restrictive conditions often required in the MCMC or filtering literature of methods defined on pathspace -- that the SDE covariance matrix is invertible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源