论文标题
在铁流体的自由表面上的局部径向图案
Localised Radial Patterns on the Free Surface of a Ferrofluid
论文作者
论文摘要
本文研究了在存在均匀的垂直磁场的情况下,研究了铁氟烷表面上的局部轴对称(径向)图案。我们正式研究所有可能的小振幅溶液,这些溶液保持在模式的中心(核心区域)附近,并逐渐衰减远离模式的中心(远场区域)。结果显示了有限的深度,无限的铁氟烷,配备了线性磁化法。这些模式在Rosensweig不稳定性处分叉,其中施加的磁场强度达到临界阈值。建立了用于寻找非自治PDE系统的局部解决方案的技术;将溶液分解到独立于半径的基础上,将问题降低到一组无线性的非线性,非自主odes。使用径向中心的歧管理论,分别在核心和远场区域构建了小振幅溶液的局部流形。最后,使用几何爆破坐标,我们匹配核心和远场歧管。任何在此交叉点上的解决方案都是局部径向模式。发现了三种不同类别的固定径向溶液:斑点A和点B解决方案,这些溶液配备了两个不同的振幅缩放定律,并在核心上实现了其最大幅度,并在核心方面实现了最大幅度,从而使其远离核心。这些溶液完全对应于Swift-Hohenberg方程的局部径向溶液类别。研究了线性磁化的不同值和铁氟烷的深度,并确定了各种局部径向溶液的参数区域。本文采用的方法概述了将来严格确定轴对称局部模式存在的途径。
This paper investigates the existence of localised axisymmetric (radial) patterns on the surface of a ferrofluid in the presence of a uniform vertical magnetic field. We formally investigate all possible small-amplitude solutions which remain bounded close to the pattern's centre (the core region) and decay exponentially away from the pattern's centre (the far-field region). The results are presented for a finite-depth, infinite expanse of ferrofluid equipped with a linear magnetisation law. These patterns bifurcate at the Rosensweig instability, where the applied magnetic field strength reaches a critical threshold. Techniques for finding localised solutions to a non-autonomous PDE system are established; solutions are decomposed onto a basis which is independent of the radius, reducing the problem to an infinite set of nonlinear, non-autonomous ODEs. Using radial centre manifold theory, local manifolds of small-amplitude solutions are constructed in the core and far-field regions, respectively. Finally, using geometric blow-up coordinates, we match the core and far-field manifolds; any solution that lies on this intersection is a localised radial pattern. Three distinct classes of stationary radial solutions are found: spot A and spot B solutions, which are equipped with two different amplitude scaling laws and achieve their maximum amplitudes at the core, and ring solutions, which achieve their maximum amplitudes away from the core. These solutions correspond exactly to the classes of localised radial solutions found for the Swift-Hohenberg equation. Different values of the linear magnetisation and depth of the ferrofluid are investigated and parameter regions in which the various localised radial solutions emerge are identified. The approach taken in this paper outlines a route to rigorously establishing the existence of axisymmetric localised patterns in the future.