论文标题

通过组合原子部分电荷和原子偶极子来预测分子偶极矩

Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles

论文作者

Veit, Max, Wilkins, David M., Yang, Yang, DiStasio Jr., Robert A., Ceriotti, Michele

论文摘要

分子偶极矩($ \boldsymbolμ$)是化学中的中心数量。预测红外和总和频率的生成光谱以及诱导和远程静电相互作用至关重要。此外,它可以直接从高级量子机械计算中提取,使其成为机器学习(ML)的理想目标。在这项工作中,我们选择使用具有物理启发的ML模型来表示该数量,该模型捕获了两个不同的物理效果:局部原子极化是在对称适应的高斯过程回归(SA-GPR)框架中捕获的,该框架将(矢量)偶极力矩分配给每个原子,而在整个分子中均可捕获电荷的分配(分配一个分配)。将所得的“ MUML”模型拟合在一起,以重现使用高级耦合群集理论(CCSD)和密度功能理论(DFT)计算的分子$ \boldsymbolμ$。当应用于更大,更复杂的分子的展示数据集时,组合模型显示出极好的可传递性,以一小部分计算成本接近DFT的准确性。我们还证明,使用校准委员会模型可以可靠地估计预测的不确定性。但是,模型的最终性能取决于当前系统的细节,标量模型在描述大分子几乎完全通过电荷分离产生的大分子时显然是优越的。这些观察结果表明,同时考虑造成$ \boldsymbolμ$的局部和非本地效应的重要性;此外,他们定义了一项具有挑战性的任务,以基于未来的模型,尤其是针对凝结阶段描述的模型。

The molecular dipole moment ($\boldsymbolμ$) is a central quantity in chemistry. It is essential in predicting infrared and sum-frequency generation spectra, as well as induction and long-range electrostatic interactions. Furthermore, it can be extracted directly from high-level quantum mechanical calculations, making it an ideal target for machine learning (ML). In this work, we choose to represent this quantity with a physically inspired ML model that captures two distinct physical effects: local atomic polarization is captured within the symmetry-adapted Gaussian process regression (SA-GPR) framework, which assigns a (vector) dipole moment to each atom, while movement of charge across the entire molecule is captured by assigning a partial (scalar) charge to each atom. The resulting "MuML" models are fitted together to reproduce molecular $\boldsymbolμ$ computed using high-level coupled-cluster theory (CCSD) and density functional theory (DFT) on the QM7b dataset. The combined model shows excellent transferability when applied to a showcase dataset of larger and more complex molecules, approaching the accuracy of DFT at a small fraction of the computational cost. We also demonstrate that the uncertainty in the predictions can be estimated reliably using a calibrated committee model. The ultimate performance of the models depends, however, on the details of the system at hand, with the scalar model being clearly superior when describing large molecules whose dipole is almost entirely generated by charge separation. These observations point to the importance of simultaneously accounting for the local and non-local effects that contribute to $\boldsymbolμ$; further, they define a challenging task to benchmark future models, particularly those aimed at the description of condensed phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源