论文标题

通过遗忘的本地搜索预测晶体结构

Crystal Structure Prediction via Oblivious Local Search

论文作者

Antypov, Dmytro, Deligkas, Argyrios, Gusev, Vladimir, Rosseinsky, Matthew J., Spirakis, Paul G., Theofilatos, Michail

论文摘要

我们研究晶体结构预测,这是计算化学的主要问题之一。这本质上是一个连续的优化问题,其中已经提出和应用了许多不同,简单和复杂的方法。简单的搜索技术易于理解,通常易于实现,但实际上它们可能很慢。另一方面,更复杂的方法一般而言,但是几乎所有的方法都有大量需要微调的参数,并且在大多数情况下,需要化学专业知识才能正确设置它们。此外,由于参数调整涉及的化学专业知识,这些方法可以是{\ em偏见},朝着以前已知的晶体结构。我们的贡献是双重的。首先,我们从理论计算机科学的角度将晶体结构预测问题以及其他几个中间问题进行形式化。其次,我们为基于局部搜索的晶体结构预测提出了一种遗忘算法。遗忘意味着我们的算法需要关于我们试图计算晶体结构的组成的最小知识。另外,我们的算法可以用作{\ em any}方法的中间步骤。我们的实验表明,我们的算法的表现优于标准盆地跳跃,这是一个很好的研究算法。

We study Crystal Structure Prediction, one of the major problems in computational chemistry. This is essentially a continuous optimization problem, where many different, simple and sophisticated, methods have been proposed and applied. The simple searching techniques are easy to understand, usually easy to implement, but they can be slow in practice. On the other hand, the more sophisticated approaches perform well in general, however almost all of them have a large number of parameters that require fine tuning and, in the majority of the cases, chemical expertise is needed in order to properly set them up. In addition, due to the chemical expertise involved in the parameter-tuning, these approaches can be {\em biased} towards previously-known crystal structures. Our contribution is twofold. Firstly, we formalize the Crystal Structure Prediction problem, alongside several other intermediate problems, from a theoretical computer science perspective. Secondly, we propose an oblivious algorithm for Crystal Structure Prediction that is based on local search. Oblivious means that our algorithm requires minimal knowledge about the composition we are trying to compute a crystal structure for. In addition, our algorithm can be used as an intermediate step by {\em any} method. Our experiments show that our algorithms outperform the standard basin hopping, a well studied algorithm for the problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源