论文标题
DA-NAS:数据调整用于有效的神经体系结构搜索的修剪
DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search
论文作者
论文摘要
有效的搜索是神经体系结构搜索(NAS)中的核心问题。传统的NAS算法很难直接在Imagenet等大规模任务上搜索架构。通常,NAS的GPU小时成本在培训数据集大小和候选设置大小方面增加了。一种常见的方法是在较小的代理数据集(例如CIFAR-10)上搜索,然后转移到目标任务(例如ImageNet)。这些对代理数据优化的体系结构不能保证在目标任务上是最佳的。另一个常见的方法是使用较小的候选人集来学习,这可能需要专家知识,并且确实背叛了NAS的本质。在本文中,我们提出了可以直接搜索体系结构的大规模目标任务的DA-NA,同时允许以更有效的方式设置大型候选人。我们的方法基于一个有趣的观察结果,即深神经网络中块的学习速度与识别不同类别的困难有关。我们仔细设计了一个渐进数据调整的修剪策略,以进行有效的体系结构搜索。它将在目标数据集的子集(例如,轻松类)的子集上快速修剪性能较低的块,然后逐渐在整个目标数据集中找到最佳的块。目前,原始候选人集变得尽可能紧凑,在目标任务中提供更快的搜索。 Imagenet上的实验验证了我们方法的有效性。它比以前的方法快2倍,而准确性当前是最先进的,在小拖船约束下为76.2%。它支持参数搜索空间(即更多候选块),以有效地搜索表现最佳的体系结构。
Efficient search is a core issue in Neural Architecture Search (NAS). It is difficult for conventional NAS algorithms to directly search the architectures on large-scale tasks like ImageNet. In general, the cost of GPU hours for NAS grows with regard to training dataset size and candidate set size. One common way is searching on a smaller proxy dataset (e.g., CIFAR-10) and then transferring to the target task (e.g., ImageNet). These architectures optimized on proxy data are not guaranteed to be optimal on the target task. Another common way is learning with a smaller candidate set, which may require expert knowledge and indeed betrays the essence of NAS. In this paper, we present DA-NAS that can directly search the architecture for large-scale target tasks while allowing a large candidate set in a more efficient manner. Our method is based on an interesting observation that the learning speed for blocks in deep neural networks is related to the difficulty of recognizing distinct categories. We carefully design a progressive data adapted pruning strategy for efficient architecture search. It will quickly trim low performed blocks on a subset of target dataset (e.g., easy classes), and then gradually find the best blocks on the whole target dataset. At this time, the original candidate set becomes as compact as possible, providing a faster search in the target task. Experiments on ImageNet verify the effectiveness of our approach. It is 2x faster than previous methods while the accuracy is currently state-of-the-art, at 76.2% under small FLOPs constraint. It supports an argument search space (i.e., more candidate blocks) to efficiently search the best-performing architecture.