论文标题

hurwitz以类型的类型$ f_4 $,$ e_6 $,$^2e_6 $,$ e_7 $和$ e_8 $生成

Hurwitz Generation in Groups of Types $F_4$, $E_6$, $^2E_6$, $E_7$ and $E_8$

论文作者

Pierro, Emilio

论文摘要

hurwitz为组$ g $生成三倍的是订购的三重元素$(x,y,z)\ in g^3 $中的$ x^2 = y^3 = z^7 = xyz = xyz = 1 $和$ \ langle x,y,z \ z \ rangle = g $。对于有限的Quasisimple典型组$ f_4 $,$ e_6 $,$^2e_6 $,$ e_7 $和$ e_8 $,我们提供了限制,如果$(x,y,z)$属于$ x $,$ y $和$ y $和$ z $的conjugacy类,$ x $ y $和$ z $,是一个hurwitz生成的三重。我们证明,Hurwitz生成了三倍的$ f_4(3)$,$ f_4(5)$,$ f_4(7)$,$ f_4(8)$,$ e_6(3)$和$ E_7(2)$ $ e_6(7^{3n-2})$,$ e_6(7^{3n-1})$,$ se_6(7^n)$或$^2e_6(7^n)$时$ n \ geq 1 $。

A Hurwitz generating triple for a group $G$ is an ordered triple of elements $(x,y,z) \in G^3$ where $x^2=y^3=z^7=xyz=1$ and $\langle x,y,z \rangle = G$. For the finite quasisimple exceptional groups of types $F_4$, $E_6$, $^2E_6$, $E_7$ and $E_8$, we provide restrictions on which conjugacy classes $x$, $y$ and $z$ can belong to if $(x,y,z)$ is a Hurwitz generating triple. We prove that there exist Hurwitz generating triples for $F_4(3)$, $F_4(5)$, $F_4(7)$, $F_4(8)$, $E_6(3)$ and $E_7(2)$, and that there are no such triples for $F_4(2^{3n-2})$, $F_4(2^{3n-1})$, $E_6(7^{3n-2})$, $E_6(7^{3n-1})$, $SE_6(7^n)$ or $^2E_6(7^n)$ when $n \geq 1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源