论文标题

在体积3D计算机断层扫描安全筛查图像中对禁止项目分类和检测的评估

On the Evaluation of Prohibited Item Classification and Detection in Volumetric 3D Computed Tomography Baggage Security Screening Imagery

论文作者

Wang, Qian, Bhowmik, Neelanjan, Breckon, Toby P.

论文摘要

基于X射线计算机层析成像(CT)的3D成像被广泛用于航空安全筛查的机场,而先前的禁止项目检测的工作主要集中在2D X射线成像上。在本文中,我们旨在评估将自动禁止的项目检测从2D X射线图像扩展到体积3D CT CT行李安全筛选图像的可能性。为此,我们利用3D卷积神经新型(CNN)和流行的对象检测框架,例如视网膜和更快的R-CNN。作为首次使用3D CNN进行体积3D CT行李安全筛选的尝试,我们首先评估了有关隔离违禁项目量的分类的不同CNN架构,并将使用手工制作的功能进行比较。随后,我们评估了体积3D CT行李图像上不同架构的对象检测性能。我们在瓶和手枪数据集上实验的结果表明,与传统方法相当的性能(98%的真实正率和1.5%的假阳性率)可以实现可比的性能(98%的真实率和1.5%的假阳性),但需要更少的推理时间(每卷0.014s)。此外,扩展的3D对象检测模型在检测体积的3D CT行李图像中的违禁物品中实现了有希望的性能,瓶子的地图为76%,手枪的地图为88%,这既显示出在3D CT X射线安全成像中的挑战和承诺。

X-ray Computed Tomography (CT) based 3D imaging is widely used in airports for aviation security screening whilst prior work on prohibited item detection focuses primarily on 2D X-ray imagery. In this paper, we aim to evaluate the possibility of extending the automatic prohibited item detection from 2D X-ray imagery to volumetric 3D CT baggage security screening imagery. To these ends, we take advantage of 3D Convolutional Neural Neworks (CNN) and popular object detection frameworks such as RetinaNet and Faster R-CNN in our work. As the first attempt to use 3D CNN for volumetric 3D CT baggage security screening, we first evaluate different CNN architectures on the classification of isolated prohibited item volumes and compare against traditional methods which use hand-crafted features. Subsequently, we evaluate object detection performance of different architectures on volumetric 3D CT baggage images. The results of our experiments on Bottle and Handgun datasets demonstrate that 3D CNN models can achieve comparable performance (98% true positive rate and 1.5% false positive rate) to traditional methods but require significantly less time for inference (0.014s per volume). Furthermore, the extended 3D object detection models achieve promising performance in detecting prohibited items within volumetric 3D CT baggage imagery with 76% mAP for bottles and 88% mAP for handguns, which shows both the challenge and promise of such threat detection within 3D CT X-ray security imagery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源