论文标题

随机机器回归方法:一个合奏支持向量回归模型,具有免费内核选择

Random Machines Regression Approach: an ensemble support vector regression model with free kernel choice

论文作者

Ara, Anderson, Maia, Mateus, Macêdo, Samuel, Louzada, Francisco

论文摘要

机器学习技术始终旨在减少广义预测错误。为了减少它,合奏方法提出了一种良好的方法,结合了几种模型,从而产生了更大的预测能力。随机机器已经被证明是强大的技术,即:高预测能力,用于分类任务,在本文中,我们提出了一种程序,以使用装袋加权的支持向量模型来回归问题。模拟研究是通过人工数据集和实际数据基准实现的。结果通过较低的概括误差表现出良好的回归随机机器,而无需在调整过程中选择最佳的内核函数。

Machine learning techniques always aim to reduce the generalized prediction error. In order to reduce it, ensemble methods present a good approach combining several models that results in a greater forecasting capacity. The Random Machines already have been demonstrated as strong technique, i.e: high predictive power, to classification tasks, in this article we propose an procedure to use the bagged-weighted support vector model to regression problems. Simulation studies were realized over artificial datasets, and over real data benchmarks. The results exhibited a good performance of Regression Random Machines through lower generalization error without needing to choose the best kernel function during tuning process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源