论文标题
基督徒的几何计算在平面凸域上的功能
Geometric computation of Christoffel functions on planar convex domains
论文作者
论文摘要
对于任意平面凸域,我们使用与其他简单参考域的比较来计算基督徒函数的行为达到恒定因素。通过在域中构造一个合适的椭圆来获得下限,而对于上限,构建了包含域的合适的并行教包含的并行任能。 作为应用程序,我们获得了平面凸域中最佳多项式网格存在的新证明。
For arbitrary planar convex domain, we compute the behavior of Christoffel function up to a constant factor using comparison with other simple reference domains. The lower bound is obtained by constructing an appropriate ellipse contained in the domain, while for the upper bound an appropriate parallelepiped containing the domain is constructed. As an application we obtain a new proof of existence of optimal polynomial meshes in planar convex domains.