论文标题

Yang-Mills-DIRAC恒星配置的几何变形的最小

The minimal of geometric deformation of Yang-Mills-Dirac stellar configurations

论文作者

da Rocha, Roldao

论文摘要

最小几何变形(MGD)的方法用于得出静态的,强烈的吸引力,球形对称,紧凑的恒星分布,是Yang-Mills-Mills-Mills-Einstein-Dirac耦合场方程的溶液,在流体膜上具有有限的张力。他们的解决方案表征了MGD Yang-Mills-Dirac恒星,其质量具有Chandrasekhar质量,曾经是Fermionic Selfteraction和Yang-Mills耦合常数的范围。然后讨论MGD Yang-mills-dirac恒星的物理特征,并得出它们的ADM质量,这是费米耦合常数,有限的Brane张力和Yang-Mills运行参数的函数。

The method of minimal geometric deformation (MGD) is used to derive static, strongly gravitating, spherically symmetric, compact stellar distributions that are solutions of the Yang-Mills-Einstein-Dirac coupled field equations, on fluid membranes with finite tension. Their solutions characterize MGD Yang-Mills-Dirac stars, whose mass has order of the Chandrasekhar mass, once the range of both the fermionic self-interaction and the Yang-Mills coupling constants is suitably chosen. Physical features of MGD Yang-Mills-Dirac stars are then discussed, and their ADM mass are derived, as a function of the fermion coupling constant, the finite brane tension, and the Yang-Mills running parameter as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源