论文标题

在Nustar太阳微型叶片中观察到的加速电子降低到<7 keV

Accelerated electrons observed down to <7 keV in a NuSTAR solar microflare

论文作者

Glesener, Lindsay, Krucker, S"am, Duncan, Jessie, Hannah, Iain G., Grefenstette, Brian W., Chen, Bin, Smith, David M., White, Stephen M., Hudson, Hugh

论文摘要

我们报告了核光谱望远镜阵列(NUSTAR)观察到的小太阳微叶片中非热电子分布的发射(GON类A5.7),并支持了Reuven Reuven Ramaty Ramaty高能量的高能太阳能光谱成像器(RHESSI)。燃烧的血浆通过厚目标模型的加速电子模型很好地解释了回路内的热量,类似于偶尔在较大耀斑中观察到的“冠状厚目标”行为。这是使用直接成像仪(而不是间接成像仪器)对太阳的非热X射线进行的第一个正面检测。加速电子分布的频谱指数为6.3 +/- 0.7,延伸至至少6.5 keV,并以〜2x1027 ERG/s的速率沉积能量,将耀斑环加热至至少10 mk。 X射线中的主要非热发射的存在至<5 keV意味着Rhessi发射几乎完全是非热的,与Rhessi光谱中通常假定的相反。与先前对小瑞斯耀斑的研究相比,非热能量与热能的比率与大耀斑的比率相似。我们建议,基于平均电子能量和碰撞平均自由路径,冠状厚目标可能是许多小微量液体的共同特性。对此类的未来观察将使人们能够理解耀斑颗粒加速度如何在能量尺度上变化,并有助于朝着纳米光的观测状态推动,这可能是明显的冠状加热的可能来源。

We report the detection of emission from a non-thermal electron distribution in a small solar microflare (GOES class A5.7) observed by the Nuclear Spectroscopic Telescope Array (NuSTAR), with supporting observation by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The flaring plasma is well accounted for by a thick-target model of accelerated electrons collisionally thermalizing within the loop, akin to the "coronal thick target" behavior occasionally observed in larger flares. This is the first positive detection of non-thermal hard X-rays from the Sun using a direct imager (as opposed to indirectly imaging instruments). The accelerated electron distribution has a spectral index of 6.3 +/- 0.7, extends down to at least 6.5 keV, and deposits energy at a rate of ~2x1027 erg/s, heating the flare loop to at least 10 MK. The existence of dominant non-thermal emission in X-rays down to <5 keV means that RHESSI emission is almost entirely non-thermal, contrary to what is usually assumed in RHESSI spectroscopy. The ratio of non-thermal to thermal energies is similar to that of large flares, in contrast to what has been found in previous studies of small RHESSI flares. We suggest that a coronal thick target may be a common property of many small microflares based on the average electron energy and collisional mean free path. Future observations of this kind will enable understanding of how flare particle acceleration changes across energy scales, and will aid the push toward the observational regime of nanoflares, which are a possible source of significant coronal heating.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源