论文标题
一般Hörmander课程的傅立叶积分运营商的规律性
Regularity of Fourier integral operators with amplitudes in general Hörmander classes
论文作者
论文摘要
我们证明了傅立叶积分运算符的全局$ l^p $结合性,该操作员对双曲线偏微分方程的参数进行建模,并在古典Hörmander类中具有振幅,$ s^{m} _ {ρ,δ}(\ mathbbb {rmathb {r}^n)$ 0 <1 $ 0 <1 $ 0 <1.我们还考虑了在异国类$ s^{m} _ {0,δ}(\ Mathbb {r}^n)$,$ 0 \leqΔ<1 $和禁止的类$ s^{m} {m} _ {ρ,1}(prebbb n eq leq)$ neq pelliged Clide Clidde class $ s}($ neq n eq req pe)中,我们还考虑具有振幅的操作员的规律性。此外,我们表明,尽管$ l^2 $结合了经营者的失败,但在禁止的类$ s^{0} _ {1,1}(\ Mathbb {r}^n)$中,在有问题的sobolev Space $ h^s($ h^s($ Mathbb)上,$ y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y. Meyer和E. M. Stein到傅立叶积分运营商的设置。
We prove the global $L^p$-boundedness of Fourier integral operators that model the parametrices for hyperbolic partial differential equations, with amplitudes in classical Hörmander classes $S^{m}_{ρ, δ}(\mathbb{R}^n)$ for parameters $0<ρ\leq 1$, $0\leq δ<1$. We also consider the regularity of operators with amplitudes in the exotic class $S^{m}_{0, δ}(\mathbb{R}^n)$, $0\leq δ< 1$ and the forbidden class $S^{m}_{ρ, 1}(\mathbb{R}^n)$, $0\leqρ\leq 1.$ Furthermore we show that despite the failure of the $L^2$-boundedness of operators with amplitudes in the forbidden class $S^{0}_{1, 1}(\mathbb{R}^n)$, the operators in question are bounded on Sobolev spaces $H^s(\mathbb{R}^n)$ with $s>0.$ This result extends those of Y. Meyer and E. M. Stein to the setting of Fourier integral operators.