论文标题

Accentive Cutmix:一种增强的基于深度学习图像分类的数据增强方法

Attentive CutMix: An Enhanced Data Augmentation Approach for Deep Learning Based Image Classification

论文作者

Walawalkar, Devesh, Shen, Zhiqiang, Liu, Zechun, Savvides, Marios

论文摘要

卷积神经网络(CNN)能够通过不同的正则化方法学习稳健表示,并且随着卷积层在空间上相关。基于此属性,已经提出了各种各样的区域辍学策略,例如切割,dropblock,cutmix等。这些方法旨在通过部分遮挡对象的区分部分来促进网络以更好地概括该网络。但是,所有这些都随机执行此操作,而无需捕获对象中最重要的区域。在本文中,我们提出了Accentive Cutmix,这是一种基于CutMix的自然增强的增强策略。在每次训练迭代中,我们根据特征提取器的中间注意图选择最描述性区域,该区域可以搜索图像中最歧视的部分。我们提出的方法简单而有效,易于实施,可以显着提高基线。在CIFAR-10/100,具有各种CNN体系结构(在统一的环境中)的Imagenet数据集上进行的广泛实验证明了我们所提出的方法的有效性,该方法始终优于基线cutmix和其他方法,并以显着的边缘优于基线方法。

Convolutional neural networks (CNN) are capable of learning robust representation with different regularization methods and activations as convolutional layers are spatially correlated. Based on this property, a large variety of regional dropout strategies have been proposed, such as Cutout, DropBlock, CutMix, etc. These methods aim to promote the network to generalize better by partially occluding the discriminative parts of objects. However, all of them perform this operation randomly, without capturing the most important region(s) within an object. In this paper, we propose Attentive CutMix, a naturally enhanced augmentation strategy based on CutMix. In each training iteration, we choose the most descriptive regions based on the intermediate attention maps from a feature extractor, which enables searching for the most discriminative parts in an image. Our proposed method is simple yet effective, easy to implement and can boost the baseline significantly. Extensive experiments on CIFAR-10/100, ImageNet datasets with various CNN architectures (in a unified setting) demonstrate the effectiveness of our proposed method, which consistently outperforms the baseline CutMix and other methods by a significant margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源