论文标题

关于克利福德圆环的独特性,有规定的等值比

On the Uniqueness of Clifford Torus with Prescribed Isoperimetric Ratio

论文作者

Yu, Thomas, Chen, Jingmin

论文摘要

Marques-neves定理断言,在所有圆环(即属1)中,封闭的表面,克利福德圆环的willmore Energy $ \ int H^2 \,da $。 %自然的猜想是,如果一个人开处方等法,因为willmore能量是不变的m {Ö} bius变换,则可以证明有一个单参数家族,直到同型属,属于属1 willmore minimizizer属。这样自然的猜想是,如果一个人规定其等速度比率,那么这种最小化是唯一的。在本文中,我们表明,这种猜想可以简化为多项式复发的积极问题。

The Marques-Neves theorem asserts that among all the torodial (i.e. genus 1) closed surfaces, the Clifford torus has the minimal Willmore energy $\int H^2 \, dA$. % It is a natural conjecture that if one prescribes the isoperimetric Since the Willmore energy is invariant M{ö}bius transformations, it can be shown that there is a one-parameter family, up to homotheties, of genus 1 Willmore minimizers. It is then a natural conjecture that such a minimizer is unique if one prescribes its isoperimetric ratio. In this article, we show that this conjecture can be reduced to the positivity question of a polynomial recurrence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源