论文标题
机器人形态的环境适应和通过现实世界进化的控制
Environmental Adaptation of Robot Morphology and Control through Real-world Evolution
论文作者
论文摘要
在现实世界中运行的机器人将体验一系列不同的环境和任务。对于机器人来说,必须能够适应周围环境,以在不断变化的条件下有效地工作。进化机器人技术旨在通过优化机器人的控制和身体(形态)来解决这一问题,从而适应内部和外部因素。该领域的大多数工作都是在物理模拟器中完成的,这些模拟器相对简单,无法复制现实世界中发现的相互作用的丰富性。因此,很少能找到依赖控制,身体和环境之间复杂相互作用的解决方案。在本文中,我们仅依靠现实世界的评估,并应用进化搜索来产生形态和控制的组合,以使我们的机械自我恢复四倍的机器人的机器人。我们在两个不同的物理表面上发展解决方案,并根据对照和形态分析结果。然后,我们过渡到两个以前看不见的表面,以证明我们方法的通用性。我们发现,进化搜索通过将控制和身体调整为物理环境的不同特性,从而发现了高性能和多样化的形态控制器配置。我们还发现,形态和控制在环境之间具有统计学意义的变化。此外,我们观察到,我们的方法允许形态学和控制参数转移到以前未见的地形上,证明了我们方法的一般性。
Robots operating in the real world will experience a range of different environments and tasks. It is essential for the robot to have the ability to adapt to its surroundings to work efficiently in changing conditions. Evolutionary robotics aims to solve this by optimizing both the control and body (morphology) of a robot, allowing adaptation to internal, as well as external factors. Most work in this field has been done in physics simulators, which are relatively simple and not able to replicate the richness of interactions found in the real world. Solutions that rely on the complex interplay between control, body, and environment are therefore rarely found. In this paper, we rely solely on real-world evaluations and apply evolutionary search to yield combinations of morphology and control for our mechanically self-reconfiguring quadruped robot. We evolve solutions on two distinct physical surfaces and analyze the results in terms of both control and morphology. We then transition to two previously unseen surfaces to demonstrate the generality of our method. We find that the evolutionary search finds high-performing and diverse morphology-controller configurations by adapting both control and body to the different properties of the physical environments. We additionally find that morphology and control vary with statistical significance between the environments. Moreover, we observe that our method allows for morphology and control parameters to transfer to previously-unseen terrains, demonstrating the generality of our approach.