论文标题
带有微不足道的中心者的抛物线和椭圆类型的分析图
Analytic maps of parabolic and elliptic type with trivial centralisers
论文作者
论文摘要
我们证明,对于一组密集的非理性数字$α$,地图的分析中心者$ e^{2πiα} z+ z^2 $接近$ 0 $是微不足道的。我们还证明,Arnold家族中的某些分析圆的差异性具有非理性的旋转数字,具有微不足道的中心群体。这些提供了用琐碎的中央箱子的第一个示例。
We prove that for a dense set of irrational numbers $α$, the analytic centraliser of the map $e^{2πi α} z+ z^2$ near $0$ is trivial. We also prove that some analytic circle diffeomorphisms in the Arnold family, with irrational rotation numbers, have trivial centralisers. These provide the first examples of such maps with trivial centralisers.