论文标题

BVI-DVC:深度视频压缩的培训数据库

BVI-DVC: A Training Database for Deep Video Compression

论文作者

Ma, Di, Zhang, Fan, Bull, David R.

论文摘要

与常规方法相比,深度学习方法越来越多地应用于视频压缩算法的优化,并可以显着增强编码增长。这种方法经常采用卷积神经网络(CNN),这些神经网络在数据库中进行了相对有限的内容覆盖率培训。在本文中,介绍了一种新的广泛的视频数据库BVI-DVC,用于培训基于CNN的视频压缩系统,并特别强调机器学习工具,以增强常规编码体系结构,包括空间分辨率和位置深度上下绘制,并进行上下采样,后处理,后处理和内置过滤。 BVI-DVC在270p至2160p的各种空间分辨率下包含800个序列,并已在十种现有的网络架构上评估了四种不同的编码工具。实验结果表明,该数据库在相同培训和评估配置下的三个现有(常用)图像/视频培训数据库的编码增益方面产生了重大改进。根据对PSNR的评估,使用建议的数据库对所有测试的编码模块和CNN体系结构进行总体额外的编码改进,最高为10.3%,基于VMAF的评估为8.1%。

Deep learning methods are increasingly being applied in the optimisation of video compression algorithms and can achieve significantly enhanced coding gains, compared to conventional approaches. Such approaches often employ Convolutional Neural Networks (CNNs) which are trained on databases with relatively limited content coverage. In this paper, a new extensive and representative video database, BVI-DVC, is presented for training CNN-based video compression systems, with specific emphasis on machine learning tools that enhance conventional coding architectures, including spatial resolution and bit depth up-sampling, post-processing and in-loop filtering. BVI-DVC contains 800 sequences at various spatial resolutions from 270p to 2160p and has been evaluated on ten existing network architectures for four different coding tools. Experimental results show that this database produces significant improvements in terms of coding gains over three existing (commonly used) image/video training databases under the same training and evaluation configurations. The overall additional coding improvements by using the proposed database for all tested coding modules and CNN architectures are up to 10.3% based on the assessment of PSNR and 8.1% based on VMAF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源