论文标题
非基本的毛刺斜纹瓷砖及其在双曲线空间中的最佳击打包装和覆盖物I。对于家庭F1-F4
Non-fundamental trunc-simplex tilings and their optimal hyperball packings and coverings in hyperbolic space I. For families F1-F4
论文作者
论文摘要
某些双曲线空间组的超组被归类为我们以前的作品的延续。通过E.Molnár等人的表示法,将是属于F1 -F4家族的截短四面体的整数部分。 $ 2006 $。作为一种应用程序,计算出最佳的一致性击打包装和截短基准平面的覆盖物,并计算出非常好的密度。这种覆盖密度比1964年$ $ $ $ fejes〜tóth的猜想要好。
Supergroups of some hyperbolic space groups are classified as a continuation of our former works. Fundamental domains will be integer parts of truncated tetrahedra belonging to families F1 - F4, for a while, by the notation of E. Molnár et al. in $2006$. As an application, optimal congruent hyperball packings and coverings to the truncation base planes with their very good densities are computed. This covering density is better than the conjecture of L.~Fejes~Tóth for balls and horoballs in $1964$.