论文标题
一个非欧国人的故事或:当您的几何形状没有时如何持续
A non-Euclidean story or: how to persist when your geometry doesn't
论文作者
论文摘要
散文写的数学太少了。因此,我们在这里通过幻想中的nevellette在这里证明了本地L-bilipschitz映射$ f \ colon x \ to y $在均匀的ahlfors $ q $ - Q $ - Q $ rekular,完整和紧凑的路径空间$ x $和$ y $ y是$ -Bilipschitz Map y时,当$ -bilipschitz Map y时,y $是y $是y $ yes y y y y y y y y y y y y y y y y y y y y y $ n $ natected y ny y y y yes y y y yes y ny y ny y ny connected。这种结果的动机是由于研究大型映射的渐近值,并带有一个空的分支集。参见例如[L17]。 据作者所知,结果是新的,即使该领域的专家并不难证明。当分支集为空时,在更通用的环境中,证明本质上是[L17]中思想的适度扩展。
Too little mathematics has been written in prose. Thus we prove here, via a fantasy novellette, that a locally L-bilipschitz mapping $f \colon X \to Y$ between uniformly Ahlfors $q$-regular, complete and locally compact path-metric spaces $X$ and $Y$ is an $L$-bilipschitz map when $Y$ is simply connected. The motivation for such a result arises from studying the asymptotic values of BLD-mappings with an empty branch set; see e.g. [L17]. As far as the author is aware, the result is new, even though it would not be hard for specialists in the field to prove. The proof is essentially a modest extension of the ideas in [L17] in a more general setting when the branch set is empty.