论文标题
插值分区类别中的半透明性和不可分解的对象
Semisimplicity and Indecomposable Objects in Interpolating Partition Categories
论文作者
论文摘要
我们研究了Karoubian Tensor类别,这些类别插入了所谓的易于量子组家族的插值表示类别,与Deligne的插值类别$ \ MATHRM {\ MATHRM {\ suespLine {rep}}(s_t)$插值对称组的表示类别相同。由于可以使用分区的图形计算来描述此类类别,因此我们称它们为插值分区类别。它们将$ \ mathrm {\ lisepline {rep}}(s_t)$作为一种特殊情况,通常可以将其视为后者的子类别。为了关注不可分解的对象的半透明性和描述,我们证明了针对特殊情况已知的结果的统一概括,包括$ \ mathrm {\ lisepline {rep}}}(s_t)$或temperley-lieb类别。特别是,对于所有所谓的群体理论易于量子群,我们分别确定了插值参数的那些值,分别对应于半神经和非隔离类别。至关重要的成分是对诺普开发的某些亚物体晶格的抽象分析,我们适应了分区类别。我们继续证明,通过有限组的系统,我们将非零的插值参数的所有插值分区类别的参数化,我们将我们与任何分区类别相关联,并且我们还用来描述这些interpolation类别的Grothendieck环的相关分级环。
We study Karoubian tensor categories which interpolate representation categories of families of so-called easy quantum groups in the same sense in which Deligne's interpolation categories $\mathrm{\underline{Rep}}(S_t)$ interpolate the representation categories of the symmetric groups. As such categories can be described using a graphical calculus of partitions, we call them interpolating partition categories. They include $\mathrm{\underline{Rep}}(S_t)$ as a special case and can generally be viewed as subcategories of the latter. Focusing on semisimplicity and descriptions of the indecomposable objects, we prove uniform generalisations of results known for special cases, including $\mathrm{\underline{Rep}}(S_t)$ or Temperley--Lieb categories. In particular, we identify those values of the interpolation parameter which correspond to semisimple and non-semisimple categories, respectively, for all so-called group-theoretical easy quantum groups. A crucial ingredient is an abstract analysis of certain subobject lattices developed by Knop, which we adapt to categories of partitions. We go on to prove a parametrisation of the indecomposable objects in all interpolating partition categories for non-zero interpolation parameters via a system of finite groups which we associate to any partition category, and which we also use to describe the associated graded rings of the Grothendieck rings of these interpolation categories.