论文标题

强大的多路定向越来的问题:保护对抗攻击

Robust Multiple-Path Orienteering Problem: Securing Against Adversarial Attacks

论文作者

Shi, Guangyao, Zhou, Lifeng, Tokekar, Pratap

论文摘要

多路向定向问题要求为一组机器人提供路径,这些机器人最大程度地收集了总奖励,同时满足了路径长度的预算约束。该问题模拟了许多多机器人路由任务,例如探索未知环境和用于环境监视的信息收集。在本文中,我们专注于如何使机器人团队在对抗环境中运行时的失败。我们介绍了强大的多路导向问题(RMOP),在该问题中,我们寻求最坏的案例保证,以应对最多能够在$α$机器人中攻击的对手。我们考虑了此问题的两个版本:RMOP离线和RMOP在线。在离线版本中,当机器人执行其计划时,没有通信或重新播放,我们的主要贡献是一种一般近似方案,具有有限的近似保证,该方案取决于$α$,以及单个机器人定向启动的近似因素。特别是,我们表明算法在成本函数模块化时产生A(i)恒定因子近似; (ii)$ \ log $因要素近似值时近似; (iii)当成本函数是子模具时,恒定因子近似,但允许机器人超过其路径预算的限制。在在线版本中,RMOP被建模为两个玩家的顺序游戏,并以基于蒙特卡洛树搜索(MCTS)的后退地平线方式自适应地解决。除了理论分析外,我们还进行了模拟研究,以用于海洋监测和隧道信息收集应用,以证明我们方法的功效。

The multiple-path orienteering problem asks for paths for a team of robots that maximize the total reward collected while satisfying budget constraints on the path length. This problem models many multi-robot routing tasks such as exploring unknown environments and information gathering for environmental monitoring. In this paper, we focus on how to make the robot team robust to failures when operating in adversarial environments. We introduce the Robust Multiple-path Orienteering Problem (RMOP) where we seek worst-case guarantees against an adversary that is capable of attacking at most $α$ robots. We consider two versions of this problem: RMOP offline and RMOP online. In the offline version, there is no communication or replanning when robots execute their plans and our main contribution is a general approximation scheme with a bounded approximation guarantee that depends on $α$ and the approximation factor for single robot orienteering. In particular, we show that the algorithm yields a (i) constant-factor approximation when the cost function is modular; (ii) $\log$ factor approximation when the cost function is submodular; and (iii) constant-factor approximation when the cost function is submodular but the robots are allowed to exceed their path budgets by a bounded amount. In the online version, RMOP is modeled as a two-player sequential game and solved adaptively in a receding horizon fashion based on Monte Carlo Tree Search (MCTS). In addition to theoretical analysis, we perform simulation studies for ocean monitoring and tunnel information-gathering applications to demonstrate the efficacy of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源