论文标题
某些RWA系统的有限温度非马克维亚进化的积分表示
Integral representation of finite temperature non-Markovian evolution of some RWA systems
论文作者
论文摘要
我们在有限温度下介绍了弗里德里奇(Friedrichs)模型,该模型是旋转波近似中自旋 - 玻色子的单粒子限制,并获得该模型激发态的种群。我们还考虑振荡器与旋转波近似中的骨气热浴相互作用,并获得该振荡器平均激发数的动力学。两种溶液均以具有相关函数的零温溶液的积分表示。
We introduce the Friedrichs model at finite temperature which is one- and zero-particle restriction of spin-boson in the rotating wave approximation and obtain the population of the excited state for this model. We also consider the oscillator interacting with bosonic thermal bath in the rotating wave approximation and obtain dynamics of mean excitation number for this oscillator. Both solutions are expressed in terms of integrals of zero-temperature solutions with correspondent correlation functions.