论文标题

重新排列群体类别的Calderón-Mityagin定理的版本

A version of Calderón-Mityagin theorem for the class of rearrangement invariant groups

论文作者

Astashkin, Sergey

论文摘要

令$ l_0 $为所有实数序列的组(相对于坐标的添加)$ x =(x_k)_ {k = 1}^\ infty $最终为零,配备了quasi-norm $ \ | | x \ | x \ | x \ | _0 = {\ rm card}}}}}} \ {supp {subp {supp {supp \ {supp \ {x \} $。给出了对$(l_0,l_1)$中元素轨道的描述,其中(在序列空间设置中)对经典的calderón-mityagin定理进行了补充。结果,我们获得了这对$(l_0,l_1)$是$ {\ Mathcal k} $ - 单调。

Let $l_0$ be the group (with respect to the coordinate-wise addition) of all sequences of real numbers $x=(x_k)_{k=1}^\infty$ that are eventually zero, equipped with the quasi-norm $\|x\|_0={\rm card}\{supp\,x\}$. A description of orbits of elements in the pair $(l_0,l_1)$ is given, which complements (in the sequence space setting) the classical Calderón-Mityagin theorem on a description of orbits of elements in the pair $(l_1,l_\infty)$. As a consequence, we obtain that the pair $(l_0,l_1)$ is ${\mathcal K}$-monotone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源