论文标题
重建量子分子转子基态
Reconstructing quantum molecular rotor ground states
论文作者
论文摘要
C $ _ {60} $的纳米分子组件可以合成以封闭偶极分子。此类内叶烯的低温状态由量子机械转子描述,量子机械转子是具有较高维度局部希尔伯特空间的量子信息设备的候选者。在迅速采用机器学习技术来表征,验证和从测量数据中重建量子状态的机器学习技术时,对内氟烯阵列的实验探索。在本文中,我们制定了一种策略,以使用限制性玻尔兹曼机器(RBMS)来重建偶极转子链的基态,该机器(RBMS)适用于训练来自高维Hilbert Space的数据。我们证明了从自由行征本的训练数据的RBM基础上训练数据的RBM准确生成能源期望值,并探索了各种链长和偶性相互作用强度所需的学习资源。最后,由于难以在抽样程序中施加对称性,RBM可以实现的准确性基本局限性。我们讨论了未来克服这一限制的可能途径,包括出于量子状态重建的目的,进一步开发自回归模型,例如复发性神经网络。
Nanomolecular assemblies of C$_{60}$ can be synthesized to enclose dipolar molecules. The low-temperature states of such endofullerenes are described by quantum mechanical rotors, which are candidates for quantum information devices with higher-dimensional local Hilbert spaces. The experimental exploration of endofullerene arrays comes at a time when machine learning techniques are rapidly being adopted to characterize, verify, and reconstruct quantum states from measurement data. In this paper, we develop a strategy for reconstructing the ground state of chains of dipolar rotors using restricted Boltzmann machines (RBMs) adapted to train on data from higher-dimensional Hilbert spaces. We demonstrate accurate generation of energy expectation values from an RBM trained on data in the free-rotor eigenstate basis, and explore the learning resources required for various chain lengths and dipolar interaction strengths. Finally, we show evidence for fundamental limitations in the accuracy achievable by RBMs due to the difficulty in imposing symmetries in the sampling procedure. We discuss possible avenues to overcome this limitation in the future, including the further development of autoregressive models such as recurrent neural networks for the purposes of quantum state reconstruction.