论文标题
准周期性不可压缩的Euler流动3D
Quasi-periodic incompressible Euler flows in 3D
论文作者
论文摘要
我们证明了三维圆环$ \ t^3 $的不可压缩欧拉方程的时间 - 周期性解决方案的存在,具有较小的时间 - 时间 - 周期性外力。这些溶液是恒定(二芬太丁)载体场的扰动,它们是通过正常形式和KAM技术来构造的,用于可逆的准线性PDE。
We prove the existence of time-quasi-periodic solutions of the incompressible Euler equation on the three-dimensional torus $\T^3$, with a small time-quasi-periodic external force. The solutions are perturbations of constant (Diophantine) vector fields, and they are constructed by means of normal forms and KAM techniques for reversible quasilinear PDEs.