论文标题
当前的倒置在定期驱动的二维布朗棘轮中
Current inversion in a periodically driven two-dimensional Brownian ratchet
论文作者
论文摘要
众所周知,布朗棘轮可以表现出当前的逆转,其中电流开关的符号是驾驶频率的函数。我们引入了这种二维布朗棘轮的空间离散化,以实现有效计算这些电流的光谱方法。这些离散的空间模型提供了一种方便研究马尔可维亚动力学以产生特定电流值的条件。通过研究此类条件过程,我们证明了当前的低频负值是由典型事件和当前的高频正值产生的,这是罕见事件引起的。我们演示了这些观察结果如何通过特定的频率响应来告知时间依赖的潜在景观。
It is well-known that Brownian ratchets can exhibit current reversals, wherein the sign of the current switches as a function of the driving frequency. We introduce a spatial discretization of such a two-dimensional Brownian ratchet to enable spectral methods that efficiently compute those currents. These discrete-space models provide a convenient way to study the Markovian dynamics conditioned upon generating particular values of the currents. By studying such conditioned processes, we demonstrate that low-frequency negative values of current arise from typical events and high-frequency positive values of current arises from rare events. We demonstrate how these observations can inform the sculpting of time-dependent potential landscapes with a specific frequency response.