论文标题

liouville理论和矩阵模型:惠勒·德威特(Wheeler Dewitt)的观点

Liouville theory and Matrix models: A Wheeler DeWitt perspective

论文作者

Betzios, Panagiotis, Papadoulaki, Olga

论文摘要

我们分析了Wheeler DeWitt方法的二维量子重力和全息图之间的连接,主要集中在Liouville Theory的情况下,耦合到$ C = 1 $ MATTER。我们的动机是了解某种形式的平均形式对于边界理论是否必不可少,如果我们希望描述这个二维示例的批量量子重力路径的积分。因此,该分析本具有类似于最近对Jackiw-Teitelboim(JT) - 重度的研究的精神。宏观环路操作员定义了全息边界双重居住的渐近区域。相反,基质量子力学(MQM)和相关的双缩放费用场理论提供了对此类二维宇宙的完整动态的明确“超空间中的统一描述”,其中包括拓扑变化的影响。如果我们试图将希尔伯特空间与单个边界双重双重相关联,则似乎不能包含非扰动大量量子重力路径积分和MQM中的所有信息。

We analyse the connections between the Wheeler DeWitt approach for two dimensional quantum gravity and holography, focusing mainly in the case of Liouville theory coupled to $c=1$ matter. Our motivation is to understand whether some form of averaging is essential for the boundary theory, if we wish to describe the bulk quantum gravity path integral of this two dimensional example. The analysis hence, is in a spirit similar to the recent studies of Jackiw-Teitelboim (JT)-gravity. Macroscopic loop operators define the asymptotic region on which the holographic boundary dual resides. Matrix quantum mechanics (MQM) and the associated double scaled fermionic field theory on the contrary, is providing an explicit "unitary in superspace" description of the complete dynamics of such two dimensional universes with matter, including the effects of topology change. If we try to associate a Hilbert space to a single boundary dual, it seems that it cannot contain all the information present in the non-perturbative bulk quantum gravity path integral and MQM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源