论文标题
模拟星系簇中AGN反馈内核的测试
Tests of AGN Feedback Kernels in Simulated Galaxy Clusters
论文作者
论文摘要
在中央冷却时间的冷核星系簇中,与哈勃时间短得多,环境中心气体的凝结受加热机制调节,可能是一个活跃的银河核(AGN)。先前的分析工作表明,某些热输入的径向分布可能会导致与准稳态的全球状态的收敛,即即使加热和冷却在局部平衡时,辐射冷却的时间尺度也不会实质性地变化。为了检验这一假设,我们使用\ enzo代码模拟了理想化的星系群集晕,并具有理想化的球形对称热输入内核,旨在仿真。热能根据一系列内核进行分配,其中总加热更新以匹配总冷却,每10美元〜\ text {myr} $。一些加热核可以维持准稳态的全局构型,但是我们测试的没有内核会产生一个准稳态状态,中央熵与在冷核簇中观察到的中心熵低。模拟的一般行为取决于内部$ 10〜 \文本{kpc} $中的加热比例,而中央供热较低,导致中央冷却灾难,高中心加热产生了一个中心对流区,并具有倒置的熵梯度,并具有倒数的中央供暖,并在平坦的集中熵中产生超过观察力的中心供暖。我们的模拟光环落入不稳定的多相状态的时间尺度与最低熵气的冷却时间的平方成正比,从而使更集中的加热以保持更长的持久稳态。
In cool-core galaxy clusters with central cooling times much shorter than a Hubble time, condensation of the ambient central gas is regulated by a heating mechanism, probably an active galactic nucleus (AGN). Previous analytical work has suggested that certain radial distributions of heat input may result in convergence to a quasi-steady global state that does not substantively change on the timescale for radiative cooling, even if the heating and cooling are not locally in balance. To test this hypothesis, we simulate idealized galaxy cluster halos using the \ENZO code with an idealized, spherically symmetric heat-input kernel intended to emulate. Thermal energy is distributed with radius according to a range of kernels, in which total heating is updated to match total cooling every $10 ~\text{Myr}$. Some heating kernels can maintain quasi-steady global configurations, but no kernel we tested produces a quasi-steady state with central entropy as low as those observed in cool-core clusters. The general behavior of the simulations depends on the proportion of heating in the inner $10 ~\text{kpc}$, with low central heating leading to central cooling catastrophes, high central heating creating a central convective zone with an inverted entropy gradient, and intermediate central heating resulting in a flat central entropy profile that exceeds observations. The timescale on which our simulated halos fall into an unsteady multiphase state is proportional to the square of the cooling time of the lowest entropy gas, allowing more centrally concentrated heating to maintain a longer lasting steady state.