论文标题
使用Tukey G-and-H随机场模型对城市热浪的时空分析
Spatiotemporal analysis of urban heatwaves using Tukey g-and-h random field models
论文作者
论文摘要
在智能城市动态建模中,用于分析城市热岛(UHI)效应和局部热浪效应和局部热浪的温度过程的统计量化是一个越来越重要的应用领域。这导致实时热浪风险管理在细粒度的空间分辨率上的重要性越来越大。这项研究试图分析和开发建模地面温度时空行为的新方法。开发的模型考虑了高阶随机空间特性,例如偏度和峰度,这些特性是理解和描述局部温度波动和UHI的关键组成部分。开发的模型应用于更大的东京都会区,以进行详细的现实数据案例研究。该分析还展示了如何统计地合并各种真实数据集。这包括远程感知的图像和各种地面监控站点数据,以构建将城市和城市协变量与空气温度联系起来的模型。然后,使用空气温度模型来捕获用于地面温度建模的高分辨率空间仿真器输出。研究的主要过程包括用于捕获城市环境中热过程的空间和时间方面的Tukey G-H-H过程。
The statistical quantification of temperature processes for the analysis of urban heat island (UHI) effects and local heat-waves is an increasingly important application domain in smart city dynamic modelling. This leads to the increased importance of real-time heatwave risk management on a fine-grained spatial resolution. This study attempts to analyze and develop new methods for modelling the spatio-temporal behavior of ground temperatures. The developed models consider higher-order stochastic spatial properties such as skewness and kurtosis, which are key components for understanding and describing local temperature fluctuations and UHI's. The developed models are applied to the greater Tokyo metropolitan area for a detailed real-world data case study. The analysis also demonstrates how to statistically incorporate a variety of real data sets. This includes remotely sensed imagery and a variety of ground-based monitoring site data to build models linking city and urban covariates to air temperature. The air temperature models are then used to capture high-resolution spatial emulator outputs for ground surface temperature modelling. The main class of processes studied includes the Tukey g-and-h processes for capturing spatial and temporal aspects of heat processes in urban environments.