论文标题
正标曲率指标空间上的H空间结构
H-Space structures on spaces of metrics of positive scalar curvature
论文作者
论文摘要
我们在$ \ Mathcal r^+(m)$上构建和研究$ h $ -space乘法,用于歧管$ m $,这些$ m $在自己的切线$ 2 $ -type中是无效的。这适用于通过回调对$ \ Mathcal r^+(m)$的差异组的刚性标准。我们还将其与$ \ Mathcal r^+(m)$上的其他已知乘法结构进行了比较。
We construct and study an $H$-space multiplication on $\mathcal R^+(M)$ for manifolds $M$ which are nullcobordant in their own tangential $2$-type. This is applied to give a rigidity criterion for the action of the diffeomorphism group on $\mathcal R^+(M)$ via pullback. We also compare this to other known multiplicative structures on $\mathcal R^+(M)$.