论文标题
使用Facebook灾难地图检测到的加利福尼亚州大型战争期间的人口流离失所模式
Patterns of population displacement during mega-fires in California detected using Facebook Disaster Maps
论文作者
论文摘要
Facebook灾难地图(FBDM)是第一个提供从众包数据定位灾害习惯的数据的人口变更产品的平台。我们使用Mann-Kendall测试和新兴的冷热点在异常分析中评估了FBDM数据的代表性,以揭示美国加利福尼亚州的Mendocino Complex和Woolsey Fire在美国加利福尼亚州的Mendocino Complex和Woolsey Fire期间人口流离失所的趋势,幅度和群集。我们的结果表明,FBDM危机前用户的分布非常适合来自不同来源的总人口。由于使用习惯,FBDM数据中老年人口的代表性不足。在加利福尼亚州的两次大型战斗中,FBDM数据有效地捕获了由于疏散订单的放置和提升而引起的人口的时间变化。再加上单调趋势,人口的寒冷和热点的跌倒和兴起揭示了人口最多的地区,并且潜在的位置可以容纳流离失所的居民。 Mendocino复合物和Woolsey火灾之间的比较表明,人口稠密的区域的撤离速度比几乎没有人口的更快,这可能是由于更好的运输途径。在人口稠密的火灾区域中,应优先考虑将人们移至避难所,因为流离失所的居民没有太多替代选择,而人口稠密地区的同行则可以利用其社交联系来在撤离期间在附近地区寻求临时住宿。 FBDM数据和衍生品可以与代表性不足的社区进行评估,可以为危机应对和救灾提供近乎实时的人口流离失所的急需信息。随着应用和数据生成的成熟,FBDM将利用众包数据并帮助第一响应者决策。
Facebook Disaster Maps (FBDM) is the first platform providing analysis-ready population change products derived from crowdsourced data targeting disaster relief practices. We evaluate the representativeness of FBDM data using the Mann-Kendall test and emerging hot and cold spots in an anomaly analysis to reveal the trend, magnitude, and agglommeration of population displacement during the Mendocino Complex and Woolsey fires in California, USA. Our results show that the distribution of FBDM pre-crisis users fits well with the total population from different sources. Due to usage habits, the elder population is underrepresented in FBDM data. During the two mega-fires in California, FBDM data effectively captured the temporal change of population arising from the placing and lifting of evacuation orders. Coupled with monotonic trends, the fall and rise of cold and hot spots of population revealed the areas with the greatest population drop and potential places to house the displaced residents. A comparison between the Mendocino Complex and Woolsey fires indicates that a densely populated region can be evacuated faster than a scarcely populated one, possibly due to the better access to transportation. In sparsely populated fire-prone areas, resources should be prioritized to move people to shelters as the displaced residents do not have many alternative options, while their counterparts in densely populated areas can utilize their social connections to seek temporary stay at nearby locations during an evacuation. Integrated with an assessment on underrepresented communities, FBDM data and the derivatives can provide much needed information of near real-time population displacement for crisis response and disaster relief. As applications and data generation mature, FBDM will harness crowdsourced data and aid first responder decision-making.