论文标题

使用光谱和高分辨率纹理成像的机器人的多模式材料分类

Multimodal Material Classification for Robots using Spectroscopy and High Resolution Texture Imaging

论文作者

Erickson, Zackory, Xing, Eliot, Srirangam, Bharat, Chernova, Sonia, Kemp, Charles C.

论文摘要

物质识别可以帮助机器人通知机器人如何正确与现实世界进行正确互动和操纵对象。在本文中,我们提出了一种多模式感应技术,利用近红外光谱和近距离高分辨率纹理成像,使机器人能够估计家用物体的材料。我们释放了一个高分辨率纹理图像和光谱测量值的数据集,该数据集是从与144个家用物体相互作用的移动操纵器中收集的。然后,我们提出一个神经网络体系结构,该架构学习光谱测量和纹理图像的紧凑多模式表示。当将材料分类概括为新对象时,我们表明,与先前的最新方法相比,这种多模式表示可以识别具有更大性能的材料。最后,我们介绍了机器人如何将这种高分辨率本地传感与机器人头部安装相机的图像结合在一起,以在桌子上的对象场景上实现准确的材料分类。

Material recognition can help inform robots about how to properly interact with and manipulate real-world objects. In this paper, we present a multimodal sensing technique, leveraging near-infrared spectroscopy and close-range high resolution texture imaging, that enables robots to estimate the materials of household objects. We release a dataset of high resolution texture images and spectral measurements collected from a mobile manipulator that interacted with 144 household objects. We then present a neural network architecture that learns a compact multimodal representation of spectral measurements and texture images. When generalizing material classification to new objects, we show that this multimodal representation enables a robot to recognize materials with greater performance as compared to prior state-of-the-art approaches. Finally, we present how a robot can combine this high resolution local sensing with images from the robot's head-mounted camera to achieve accurate material classification over a scene of objects on a table.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源