论文标题
涡流中的涡流和波浪
Vortices and waves in light dark matter
论文作者
论文摘要
在银河系光环中,像银河系一样,比$ 30 $ eV的玻色粒暗物质颗粒具有大于平均粒子间分离的de broglie波长,因此被很好地描述为一组经典波。例如,这适用于QCD轴以及较轻的轴突状颗粒,例如模糊的暗物质。我们表明,光环内的波浪的干扰不可避免地导致涡流,而偶然的破坏性干扰将密度降至零。波函数的相围绕这些点具有非平凡的绕组。这可以解释为非零速度循环,因此涡旋是流体速度具有非散发卷曲的位点。使用分析参数和数值模拟,我们研究了涡旋的特性,并表明它们具有许多通用特征:(1)在三个空间维度中,通用缺陷以涡旋环为例。 (2)平均而言,每个de Broglie音量大约有一个涡流环,并且(3)在逼真的光环中发现了通常只有单个绕组($ \ pm 1 $)的涡流。 (4)涡流附近的密度为$ r^2 $,而速度为$ 1/r $,其中$ r $是沃特克斯的距离。 (5)涡旋段以与其曲率尺度成反比的速度移动,从而使较小的涡旋环移动得更快,从而使瞬时运动超过了逃逸速度。我们讨论了涡流的观察/实验特征,更广泛地是波浪干扰。在超光制状态下,干扰子结构的重力镜头导致强烈镜头系统的通量异常为$ 5-10 \%$。对于QCD轴,在某些检测实验中,涡旋导致信号减少,而在其他检测实验中则不会。我们主张通过轴突检测实验来测量相关函数,以此作为探测和利用预期干扰子结构的一种方法。
In a galactic halo like the Milky Way, bosonic dark matter particles lighter than about $30$ eV have a de Broglie wavelength larger than the average inter-particle separation and are therefore well described as a set of classical waves. This applies to, for instance, the QCD axion as well as to lighter axion-like particles such as fuzzy dark matter. We show that the interference of waves inside a halo inevitably leads to vortices, locations where chance destructive interference takes the density to zero. The phase of the wavefunction has non-trivial winding around these points. This can be interpreted as a non-zero velocity circulation, so that vortices are sites where the fluid velocity has a non-vanishing curl. Using analytic arguments and numerical simulations, we study the properties of vortices and show they have a number of universal features: (1) In three spatial dimensions, the generic defects take the form of vortex rings. (2) On average there is about one vortex ring per de Broglie volume and (3) generically only single winding ($\pm 1$) vortices are found in a realistic halo. (4) The density near a vortex scales as $r^2$ while the velocity goes as $1/r$, where $r$ is the distance to vortex. (5) A vortex segment moves at a velocity inversely proportional to its curvature scale so that smaller vortex rings move faster, allowing momentary motion exceeding escape velocity. We discuss observational/experimental signatures from vortices and, more broadly, wave interference. In the ultra-light regime, gravitational lensing by interference substructures leads to flux anomalies of $5-10 \%$ in strongly lensed systems. For QCD axions, vortices lead to a diminished signal in some detection experiments but not in others. We advocate the measurement of correlation functions by axion detection experiments as a way to probe and capitalize on the expected interference substructures.