论文标题
具有依赖间间时间的排队系统的奇异定理
Ergodic theorems for queuing systems with dependent inter-arrival times
论文作者
论文摘要
我们研究了I.I.D. \服务时间的G/gi/1单式排队模型,该模型独立于固定时间间隔时间。我们表明,等待时间的分布会融合到固定法律,因为时间往往是无限的,只要到达时间间的时间满足Gärtner-ellis类型状况。给出了收敛率,并确定了大量法律。这些结果为此类系统的统计分析提供了工具,并以独立的到达时间超越了标准案例。
We study a G/GI/1 single-server queuing model with i.i.d.\ service times that are independent of a stationary process of inter-arrival times. We show that the distribution of the waiting time converges to a stationary law as time tends to infinity provided that inter-arrival times satisfy a Gärtner-Ellis type condition. A convergence rate is given and a law of large numbers established. These results provide tools for the statistical analysis of such systems, transcending the standard case with independent inter-arrival times.