论文标题

监视有限痕迹上具有时间逻辑的约束和元可能

Monitoring Constraints and Metaconstraints with Temporal Logics on Finite Traces

论文作者

De Giacomo, Giuseppe, De Masellis, Riccardo, Maggi, Fabrizio Maria, Montali, Marco

论文摘要

运行时监视是业务流程管理的运营决策支持领域的核心任务之一。特别是,它可以帮助流程执行者检查运行过程实例是否满足关注的业务限制,从而在发生偏差时立即提供反馈。我们研究了在有限痕迹(LTLF)和其扩展LDLF中在LTL中表达的特性的运行时监测。 LDLF是一种强大的逻辑,可在有限的轨迹上捕获所有Monadic二阶逻辑,并且通过将正则表达式与LTLF结合,采用命题动力学逻辑(PDL)来获得。有趣的是,尽管其表现力更大,但\ ldlf具有LTLF的计算复杂性。 我们表明,LDLF能够在逻辑本身中声明地表达不仅要监控的约束,还可以表达出deacto标准RV-LTL监测器。一方面,这使我们能够直接采用基于有限状态自动机的LDLF的标准表征,以细粒度的方式监视约束。另一方面,它为在其他约束的监视状态上宣告的复杂元可能性提供了基础,并通过依靠标准逻辑服务而不是临时算法来检查它们。 此外,我们将LDLF公式直接翻译成非确定性的有限状态自动机,避免绕行到Buchi Automata或交替的自动机。然后,我们报告了如何使用Java有效地实施该方法来操纵LDLF公式及其相应的监视器,以及众所周知的Prom Process开采套件作为基本的操作决策支持基础架构。

Runtime monitoring is one of the central tasks in the area of operational decision support for business process management. In particular, it helps process executors to check on-the-fly whether a running process instance satisfies business constraints of interest, providing an immediate feedback when deviations occur. We study runtime monitoring of properties expressed in LTL on finite traces (LTLf), and in its extension LDLf. LDLf is a powerful logic that captures all monadic second order logic on finite traces, and that is obtained by combining regular expressions with LTLf, adopting the syntax of propositional dynamic logic (PDL). Interestingly, in spite of its greater expressivity, \LDLf has exactly the same computational complexity of LTLf. We show that LDLf is able to declaratively express, in the logic itself, not only the constraints to be monitored, but also the de-facto standard RV-LTL monitors. On the one hand, this enables us to directly employ the standard characterization of LDLf based on finite-state automata to monitor constraints in a fine-grained way. On the other hand, it provides the basis for declaratively expressing sophisticated metaconstraints that predicate on the monitoring state of other constraints, and to check them by relying on standard logical services instead of ad-hoc algorithms. In addition, we devise a direct translation of LDLf formulae into nondeterministic finite-state automata, avoiding to detour to Buchi automata or alternating automata. We then report on how this approach has been effectively implemented using Java to manipulate LDLf formulae and their corresponding monitors, and the well-known ProM process mining suite as underlying operational decision support infrastructure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源