论文标题
非铁质拓扑绝缘子中的真实光谱
Real spectra in non-Hermitian topological insulators
论文作者
论文摘要
拓扑绝缘子中的散装或边缘的光谱通常是通过非热性使复杂的。在这里,我们表明对称性保护即使在非铁匠拓扑绝缘子中也可以完全实现散装和边缘的真实光谱。特别是,由于伪血症和kramers脱落的结合,我们表现出完全真实的光谱,而没有非弱的皮肤影响。这种保护依赖于非空间的基本对称性,并且具有稳定性对抗疾病。作为一个说明性的例子,我们研究了Bernevig-Hughes-Zhang模型的非热门扩展。螺旋边缘状态表现出振荡动力学,因为它们的非正交性是一项独特的非温和特征。
Spectra of bulk or edges in topological insulators are often made complex by non-Hermiticity. Here, we show that symmetry protection enables entirely real spectra for both bulk and edges even in non-Hermitian topological insulators. In particular, we demonstrate entirely real spectra without non-Hermitian skin effects due to a combination of pseudo-Hermiticity and Kramers degeneracy. This protection relies on nonspatial fundamental symmetry and has stability against disorder. As an illustrative example, we investigate a non-Hermitian extension of the Bernevig-Hughes-Zhang model. The helical edge states exhibit oscillatory dynamics due to their nonorthogonality as a unique non-Hermitian feature.