论文标题

关于大周长的着色挖掘的注释

A Note on Coloring Digraphs of Large Girth

论文作者

Steiner, Raphael

论文摘要

挖掘的挖掘是最短的定向周期的长度。 Digraph $ d $的二分法$ \vecχ(d)$是顶点集合中的最小尺寸,诱导无偶石子图的子集。 Harutyunyan和Mohar的一个猜想指出,每个Digraph $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ 3 $ $ 3 $,$ \ lew \ left \ lest \ lew \ lew \ lew \ lew \fracδ{4} \ right \ rceil+1 $。 Golowich最著名的部分结果表明,$ \vecχ(d)\ le \ frac {2} {5} {5}δ+o(1)$。在简短的说明中,我们证明,如果$ g \ ge 2 $,则如果$ d $是挖掘的挖掘,至少$ 2G-1 $和最高度$δ$,则$ \vecχ(d)\ le(\ frac {1} {1} {1} {3} {3} {3}+ \ frac {1} {1} {3G} {3G} {3G} {3G} {3G} {1)Δ+ O_G(1)$。这改善了Golowich的挖掘界限,而无需指向长度的定向周期最多$ 10 $。

The digirth of a digraph is the length of a shortest directed cycle. The dichromatic number $\vecχ(D)$ of a digraph $D$ is the smallest size of a partition of the vertex-set into subsets inducing acyclic subgraphs. A conjecture by Harutyunyan and Mohar states that $\vecχ(D) \le \left\lceil\fracΔ{4}\right\rceil+1$ for every digraph $D$ of digirth at least $3$ and maximum degree $Δ$. The best known partial result by Golowich shows that $\vecχ(D) \le \frac{2}{5}Δ+O(1)$. In this short note we prove for every $g \ge 2$ that if $D$ is a digraph of digirth at least $2g-1$ and maximum degree $Δ$, then $\vecχ(D) \le (\frac{1}{3}+\frac{1}{3g}) Δ+ O_g(1)$. This improves the bound of Golowich for digraphs without directed cycles of length at most $10$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源