论文标题
Cantor定理的证明
A Proof Of Cantor's Theorem
论文作者
论文摘要
我们提供了Cantor定理(大约1870年代)的简短证明:如果在某些(非空)开放间隔中为每个$ x $的$ a_n \ cos nx + b_n \ sin nx \ to 0 $,则$ a_n,b_n $是$ a_n $ a_n $ and $ a_n $ and $ a_n $ and $ a_n $ and $ a_n $和$ b_n $的序列。
We present a short proof of Cantor's Theorem (circa 1870s): if $a_n \cos nx + b_n \sin nx \to 0$ for each $x$ in some (nonempty) open interval, where $a_n, b_n$ are sequences of complex numbers, then $a_n$ and $b_n$ converge to 0.