论文标题

$ \ Mathfrak {M}何时:\ Mathfrak {M} $几乎是Gorenstein戒指?

When is $\mathfrak{m}:\mathfrak{m}$ an almost Gorenstein ring?

论文作者

D'Anna, Marco, Strazzanti, Francesco

论文摘要

给定一维Cohen-Macaulay本地环$(R,\ Mathfrak {M},K)$,我们证明当且仅当$ \ Mathfrak {M Mathfrak {M} $是ring $ \ Mathfrak {m} m}:\ Mathfrak {m Mathfrak {m Mathfrak {m} $的情况下,几乎是Gorenstein。然后,我们通过引入几乎规范的理想和gagl环的概念来概括这个结果,并证明$ r $是且仅当$ \ mathfrak {m} $是$ \ mathfrak {m mathfrak {m}的几乎规范理想时,才能证明$ r $是gagl。我们使用这个事实来表征$ \ mathfrak {m} {m}:\ mathfrak {m} $几乎是Gorenstein,但前提是$ r $具有最小的多重性。这是Chau,Goto,Kumashiro和Matsuoka证明的结果的概括,在$ \ Mathfrak {M}的情况下:\ Mathfrak {M Mathfrak {M} $是本地的,其残基字段与$ k $是同构的。

Given a one-dimensional Cohen-Macaulay local ring $(R,\mathfrak{m},k)$, we prove that it is almost Gorenstein if and only if $\mathfrak{m}$ is a canonical module of the ring $\mathfrak{m}:\mathfrak{m}$. Then, we generalize this result by introducing the notions of almost canonical ideal and gAGL ring and by proving that $R$ is gAGL if and only if $\mathfrak{m}$ is an almost canonical ideal of $\mathfrak{m}:\mathfrak{m}$. We use this fact to characterize when the ring $\mathfrak{m}:\mathfrak{m}$ is almost Gorenstein, provided that $R$ has minimal multiplicity. This is a generalization of a result proved by Chau, Goto, Kumashiro, and Matsuoka in the case in which $\mathfrak{m}:\mathfrak{m}$ is local and its residue field is isomorphic to $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源