论文标题
平面图产品结构的快速算法
A Fast Algorithm for the Product Structure of Planar Graphs
论文作者
论文摘要
Dujmović等人(focs2019)最近证明,每个平面图$ g $都是$ h \ boxtimes p $的子图,其中$ \ boxtimes $表示强的图形产品,$ h $是Treewidth 8和$ p $的图。该结果发现了许多用于线性图布局,图形着色和图形标记的应用程序。 Dujmović等人给出的证明是基于Pilipczuk和Siebertz(Soda2019)的类似分解,它们具有建设性,并导致了$ O(N^2)$ TIME ALGORITHM查找$ H $的时间算法,并从$ v(g)$ V(H \ boxtimes p)$中的$ v(g)$。在本说明中,我们表明该算法可以以$ O(n \ log n)$时间运行。
Dujmović et al (FOCS2019) recently proved that every planar graph $G$ is a subgraph of $H\boxtimes P$, where $\boxtimes$ denotes the strong graph product, $H$ is a graph of treewidth 8 and $P$ is a path. This result has found numerous applications to linear graph layouts, graph colouring, and graph labelling. The proof given by Dujmović et al is based on a similar decomposition of Pilipczuk and Siebertz (SODA2019) which is constructive and leads to an $O(n^2)$ time algorithm for finding $H$ and the mapping from $V(G)$ onto $V(H\boxtimes P)$. In this note, we show that this algorithm can be made to run in $O(n\log n)$ time.