论文标题
抗铁磁绝缘子中的自旋霍尔磁力
Spin Hall magnetoresistance in antiferromagnetic insulators
论文作者
论文摘要
抗铁磁材料有望改善自旋磁性应用的性能,因为它们在外部磁场扰动上具有鲁棒性,并且与铁磁体相比允许更快的磁化动力学。然而,由于没有宏观磁化,对抗铁磁状态的直接观察是具有挑战性的。在这里,我们表明,通过简单的电气传输实验进行了旋转霍尔磁路(SMR),可以通过调查易于平面的抗磁管绝缘子$α$ -FE2O3(hematite)和Nio nio yiarayer杂质杂质中的易受磁性磁性绝缘子来探测反铁磁性自旋结构。在三个正交平面上旋转外部磁场时,我们记录了PT的纵向和横向电阻,并观察到与SMR效应一致的特性电阻率调制。我们分析了它们的幅度和相位,并将数据与典型的孔线性铁磁Y3FE5O12/pt BiLayer的结果进行比较。观察到的磁场依赖性在一个基于两个磁性旋转的综合模型中解释,并考虑了磁场诱导的域结构的修饰。我们的结果表明,SMR使我们能够理解自旋构型并研究抗磁性多域材料中的磁弹性效应。此外,在$α$ -FE2O3/pt BiLayers中,我们发现出乎意料的大SMR振幅为$ 2.5 \ times 10^{ - 3} $,高于原型Y3FE5O5O12/pt双层,使该系统特别有趣,对房间 - empemperature the-Emperature抗燃料抗燃料抗体式旋转旋转应用特别有趣。
Antiferromagnetic materials promise improved performance for spintronic applications, as they are robust against external magnetic field perturbations and allow for faster magnetization dynamics compared to ferromagnets. The direct observation of the antiferromagnetic state, however, is challenging due to the absence of a macroscopic magnetization. Here, we show that the spin Hall magnetoresistance (SMR) is a versatile tool to probe the antiferromagnetic spin structure via simple electrical transport experiments by investigating the easy-plane antiferromagnetic insulators $α$-Fe2O3 (hematite) and NiO in bilayer heterostructures with a Pt heavy metal top electrode. While rotating an external magnetic field in three orthogonal planes, we record the longitudinal and the transverse resistivities of Pt and observe characteristic resistivity modulations consistent with the SMR effect. We analyze both their amplitude and phase and compare the data to the results from a prototypical collinear ferrimagnetic Y3Fe5O12/Pt bilayer. The observed magnetic field dependence is explained in a comprehensive model, based on two magnetic sublattices and taking into account magnetic field-induced modifications of the domain structure. Our results show that the SMR allows us to understand the spin configuration and to investigate magnetoelastic effects in antiferromagnetic multi-domain materials. Furthermore, in $α$-Fe2O3/Pt bilayers, we find an unexpectedly large SMR amplitude of $2.5 \times 10^{-3}$, twice as high as for prototype Y3Fe5O12/Pt bilayers, making the system particularly interesting for room-temperature antiferromagnetic spintronic applications.