论文标题
超越背景感知的相关过滤器:通过手工制作和深度RGB功能进行自适应上下文建模用于视觉跟踪
Beyond Background-Aware Correlation Filters: Adaptive Context Modeling by Hand-Crafted and Deep RGB Features for Visual Tracking
论文作者
论文摘要
近年来,背景感知的相关过滤器已经对视觉目标跟踪获得了许多研究兴趣。但是,由于剥削了手工制作的功能,这些方法无法适当地建模目标外观。另一方面,最近基于深度学习的视觉跟踪方法提供了竞争性能以及广泛的计算。在本文中,提出了一种自适应背景感知相关滤波器的跟踪器,该跟踪器通过使用定向梯度(HOG)或卷积神经网络(CNN)特征图的直方图有效地建模目标外观。所提出的方法利用了快速2D非最大抑制(NMS)算法和语义信息比较以检测具有挑战性的情况。当基于猪的响应图不是可靠的,或者上下文区域与先前区域的语义相似性低时,提出的方法将构建CNN上下文模型以改善目标区域估计。此外,拒绝选项允许提出的方法仅在有效区域更新CNN上下文模型。全面的实验结果表明,与OTB-50,OTB-100,TC-128,UAV-123,UAV-123和DOT-2015数据集相比,所提出的自适应方法显然优于视觉目标跟踪的准确性和鲁棒性。
In recent years, the background-aware correlation filters have achie-ved a lot of research interest in the visual target tracking. However, these methods cannot suitably model the target appearance due to the exploitation of hand-crafted features. On the other hand, the recent deep learning-based visual tracking methods have provided a competitive performance along with extensive computations. In this paper, an adaptive background-aware correlation filter-based tracker is proposed that effectively models the target appearance by using either the histogram of oriented gradients (HOG) or convolutional neural network (CNN) feature maps. The proposed method exploits the fast 2D non-maximum suppression (NMS) algorithm and the semantic information comparison to detect challenging situations. When the HOG-based response map is not reliable, or the context region has a low semantic similarity with prior regions, the proposed method constructs the CNN context model to improve the target region estimation. Furthermore, the rejection option allows the proposed method to update the CNN context model only on valid regions. Comprehensive experimental results demonstrate that the proposed adaptive method clearly outperforms the accuracy and robustness of visual target tracking compared to the state-of-the-art methods on the OTB-50, OTB-100, TC-128, UAV-123, and VOT-2015 datasets.