论文标题

在癫痫发作过程中有效连通网络的时间发展可控性

Time-evolving controllability of effective connectivity networks during seizure progression

论文作者

Scheid, Brittany H., Ashourvan, Arian, Stiso, Jennifer, Davis, Kathryn A., Mikhail, Fadi, Pasqualetti, Fabio, Litt, Brian, Bassett, Danielle S.

论文摘要

在美国,估计有300万人癫痫患者中有三分之一具有耐药性。慢性植入电极的反应性神经刺激提供了一种有希望的治疗选择,并替代了锻炼手术的替代方法。但是,确定个性化最佳刺激参数,包括何时何地进行干预以确保积极的患者结果,这是一个主要的开放挑战。网络神经科学和控制理论提供了有用的工具,可以指导参数选择的改进以控制异常神经活动。在这里,我们使用一种新的方法来表征基于植入的电极之间的正则部分相关性在发作,传播和终止阶段的34个癫痫发作的植入电极之间的正则部分相关性的动态可控性。我们使用图形最小的绝对收缩和选择算子(Glasso)(Glasso)估算了从颅内电视学记录的一秒钟窗口(Glasso)估算正规化的部分相关矩阵。从每个结果的EC网络计算出的平均和模态可控性指标跟踪大脑在有条件依赖的网络相互作用的不断发展的景观上的时变可控性。我们表明,平均可控性在整个癫痫发作中都会增加,并且与模态可控性呈负相关。此外,我们的结果支持以下假设:在发作期间,将大脑驱动大脑从发作状态持有癫痫发作状态所需的能量最小。但是,我们发现在癫痫发作区中的电极上应用控制能量可能并不总是能在能量上有利。我们的工作表明,时间不断发展的可控性的低复杂模型可能为制定和改善针对癫痫发作的控制策略提供新的见解。

Over one third of the estimated 3 million people with epilepsy in the US are medication resistant. Responsive neurostimulation from chronically implanted electrodes provides a promising treatment option and alternative to resective surgery. However, determining personalized optimal stimulation parameters, including when and where to intervene to guarantee a positive patient outcome, is a major open challenge. Network neuroscience and control theory offer useful tools that may guide improvements in parameter selection for control of anomalous neural activity. Here we use a novel method to characterize dynamic controllability across consecutive effective connectivity (EC) networks based on regularized partial correlations between implanted electrodes during the onset, propagation, and termination phases of thirty-four seizures. We estimate regularized partial correlation adjacency matrices from one-second time windows of intracranial electrocorticography recordings using the Graphical Least Absolute Shrinkage and Selection Operator (GLASSO). Average and modal controllability metrics calculated from each resulting EC network track the time-varying controllability of the brain on an evolving landscape of conditionally dependent network interactions. We show that average controllability increases throughout a seizure and is negatively correlated with modal controllability throughout. Furthermore, our results support the hypothesis that the energy required to drive the brain to a seizure-free state from an ictal state is smallest during seizure onset; yet, we find that applying control energy at electrodes in the seizure onset zone may not always be energetically favorable. Our work suggests that a low-complexity model of time-evolving controllability may offer new insights for developing and improving control strategies targeting seizure suppression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源