论文标题

利用上下文依赖性用于图像压缩的图像压缩

Exploiting context dependence for image compression with upsampling

论文作者

Duda, Jarek

论文摘要

带有UPS采样的图像压缩编码信息以随后增加图像分辨率,例如通过编码FUIF和JPEG XL的差异。它对于进行性解码很有用,也通常可以改善压缩比 - 无论是无损压缩还是DC有损系数。但是,当前使用的解决方案而不是利用上下文依赖性来编码此类升级信息。本文讨论了为此目的简单的廉价通用技术,该技术可以平均节省$ 0.645 $ bits/差异($ 0.138 $和$ 1.489 $)的最后一个高尺度的48标准$ 512 \ tims 512 $ 512 $ GRAYSCALE 8位图像 - 与固定Laplace分布的假设相比。使用上下文的最小二乘线性回归来预测拉普拉斯分布中心的平均$ 0.393 $ bits/差异。剩余的节省是通过仅使用最小二乘线性回归的另外预测该拉普拉斯分布的宽度而获得的。 对于RGB图像,仅对颜色变换的优化提供了平均$ \%$ \%$大小的尺寸减少,如果使用固定变换,则与标准YCRCB相比,如果对每个图像进行单独优化转换,则为$ \%$ $。然后,如果基于上下文预测拉普拉斯参数,则将获得更多平均$ \约10 \%$减少。提出的简单廉价一般方法也可以用于不同类型的数据,例如有损耗图像压缩中的DCT系数。

Image compression with upsampling encodes information to succeedingly increase image resolution, for example by encoding differences in FUIF and JPEG XL. It is useful for progressive decoding, also often can improve compression ratio - both for lossless compression and e.g. DC coefficients of lossy. However, the currently used solutions rather do not exploit context dependence for encoding of such upscaling information. This article discusses simple inexpensive general techniques for this purpose, which allowed to save on average $0.645$ bits/difference (between $0.138$ and $1.489$) for the last upscaling for 48 standard $512\times 512$ grayscale 8 bit images - compared to assumption of fixed Laplace distribution. Using least squares linear regression of context to predict center of Laplace distribution gave on average $0.393$ bits/difference savings. The remaining savings were obtained by additionally predicting width of this Laplace distribution, also using just the least squares linear regression. For RGB images, optimization of color transform alone gave mean $\approx 4.6\%$ size reduction comparing to standard YCrCb if using fixed transform, $\approx 6.3\%$ if optimizing transform individually for each image. Then further mean $\approx 10\%$ reduction was obtained if predicting Laplace parameters based on context. The presented simple inexpensive general methodology can be also used for different types of data like DCT coefficients in lossy image compression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源