论文标题
单晶钻石中的晶体学方向依赖性反应离子蚀刻
Crystallographic Orientation Dependent Reactive Ion Etch in Single Crystal Diamond
论文作者
论文摘要
单晶钻石中的雕刻所需形状对于实现用于纳米光学,量子计算和量子光学的复杂设备的复杂设备至关重要。氢氧化钾(KOH)中单晶硅的晶体学取度湿蚀蚀刻允许形成一系列形状,并对MEMS(Microelectromenerical Systems),AFM(原子力显微镜)和微流体产生重大影响。在这里,提出了晶体方向依赖于电感耦合血浆反应离子蚀刻剂中的干燥蚀刻原理,从而可以通过控制蚀刻条件来选择性地揭示单晶钻石中所需的晶体平面。当钻石表面上入射离子的动能降低到一定阈值以下,导致各向异性蚀刻和沿特定晶体平面的刻面降低时,就证明了这一原理。使用该原理,制造了使用氮空位中心进行磁化的整体钻石纳米尺寸。在这些纳米柱中,最高角度的最高角度达到了最高的半圆角角度,从而导致纳米柱的高光子效率和高机械强度。这些结果代表了晶体学取向依赖性反应离子蚀刻原理的首次演示,该原理为塑造特定纳米结构的新窗口打开了纳米技术核心的特定纳米结构。据认为,该原则也将被证明对于其他单晶材料的结构和图案也很有价值。
Sculpturing desired shapes in single crystal diamond is ever more crucial in the realization of complex devices for nanophotonics, quantum computing, and quantum optics. The crystallographic orientation dependent wet etch of single crystalline silicon in potassium hydroxide (KOH) allows a range of shapes formed and has significant impacts on MEMS (microelectromechanical systems), AFM (atomic force microscopy), and microfluidics. Here, a crystal direction dependent dry etching principle in an inductively-coupled plasma reactive ion etcher is presented, which allows to selectively reveal desired crystal planes in monocrystalline diamond by controlling the etching conditions. The principle is demonstrated when the kinetic energy of incident ions on diamond surfaces is reduced below a certain threshold leading to anisotropic etching and faceting along specific crystal planes. Using the principle, monolithic diamond nanopillars for magnetometry using nitrogen vacancy centers are fabricated. In these nanopillars, a half-tapering angle up to 21° is achieved, the highest angle reported, which leads to a high photon efficiency and high mechanical strength of the nanopillar. These results represent the first demonstration of crystallographic orientation dependent reactive ion etch principle, which opens a new window for shaping specific nanostructures which is at the heart of nanotechnology. It is believed that this principle will prove to be valuable for structuring and patterning of other single crystal materials as well.