论文标题
$ \ mathrm {gl} _2 $ $ $ l $ functions的零
Zeros of $\mathrm{GL}_2$ $L$-functions on the critical line
论文作者
论文摘要
我们使用Levinson的方法以及Blomer和Harcos在$ \ Mathrm {gl} _2 _2 $移动卷积问题上的工作,以证明至少有6.96%的lomorphic或maass cusp表格的L功能的零命中率在关键线上。
We use Levinson's method and the work of Blomer and Harcos on the $\mathrm{GL}_2$ shifted convolution problem to prove that at least 6.96% of the zeros of the L-function of any holomorphic or Maass cusp form lie on the critical line.